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A C O U S T I C  O S C I L L A T I O N S  N E A R  A T H I N - W A L L E D  

C Y L I N D R I C A L  O B S T A C L E  I N  A C H A N N E L  

S. V.  S u k h i n i n  UDC 517.974+534.14+534.2 

The problems of existence of eigenoscillations in infinite cylindrical regions comprising a thin 
cylindrical obstacle are studied. The existence criteria for eigenoscillations are obtained. For 
obstacles allowing axial symmetry,  the dependence of eigenoscillation frequencies on the obstacle 
dimensions is studied. The form of eigenoscillations is studied for the first modes. 

I n t r o d u c t i o n .  The existence of acoustic eigenoscillations in a certain structure can lead to the 
occurrence of resonance effects - -  the substantial growth of the oscillation amplitudes because of the feedback 
to a nonlinear source. Therefore, a study of acoustic eigenoscillations is of great importance for applications. 
A cylindrical channel comprising a thin-walled obstacle is widely used in engineering (turbines, fans, and 
pipe lines). As a rule, the oscillations which occur in real structures axe due to a nonlinear source (the 
formation of coherent structures in a flow of a liquid, vibrational combustion, etc.). The unbounded regions 
of oscillations are the most frequent. The condition of the onset of intense oscillations is the closeness of the 
source oscillation frequency to the eigenfrequency of acoustic oscillations in the unbounded region. In addition, 
the form of acoustic perturbations caused by the source should be matched to the form of the corresponding 
eigenfunction (the nonorthogonality condition of the driving force and the mode of eigenoscillations), thereby 
determining the importance of our study. 

The main difficulty in describing eigenoscillations in unbounded regions is that  the eigenfrequencies of 
acoustic oscillations are immersed into a continuous spectrum of frequencies corresponding to the generalized 
eigenoscillations. Sukhinin [1] resolved this difficulty by restricting the class of admissible solutions and proved 
the existence of eigenoscillations for sufficiently long obstacles. In the present study, eigenoscillations are shown 
to always exist for obstacles of a certain kind. In addition, numerical calculations of the form of eigenfunctions 
and the dependences of the eigenfunctions on some linear parameters are performed. 

1. Fo rmula t i on  of  t h e  P r o b l e m .  Let (x, y, z) be the Cartesian coordinates of the three-dimensional 
space R 3. An infinite cylindrical channel is described by a directrix F -- {(x, y): G(x,  y) --- 0} and a generatrix 
parallel to the Oz axis. The directrix of the cylindrical channel is assumed to be smooth, bounded, and 
limited at the surface (x, y). The notation Zr = F x R is adopted to describe the cylindrical channel. The 
obstacle in the channel is assumed to be bounded, infinitely thin, and cylindrical and with a generatrix 
parallel to the Oz axis, and it is described by means of the directrix 7 = { (x ,y ) :g (x ,y )  = 0} on the 
plane (x, y) and the system of inequalities - oo  < a(x, y) <~ z <<. b(x, y) < +oo, (x, y) E 7. The latter 
means that the obstacle edges can be irregular. For the description of the obstacle surface, the notation 
Z. r = { (x ,y , z ) :g (x ,y )  = O, a(x ,y )  <~ z <~ b(x,y)} is adopted. It is a s sumed tha t  G(x,y) ,  g(x,y) ,  a(x,y),  
and b(x, y) are sufficiently smooth functions. The directrix of the cylindrical obstacle is assumed to be inside 
the generatrix of the channel and divides the region D = Int(F) limited by F into a few coupled parts 
D = D1 t3 D2 U . . .  U DN U 1-'. The possible locations of the directrices of the cylindrical channel and the 
obstacle are given in Fig. 1 (the case presented in Fig. lb  is not considered in this paper). 
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Fig. 1 

Equations which Describe Acoustic Oscillations. The potential u(x ,y , z , t )  of the acoustic velocity 
perturbation is assumed to be periodically dependent of time: u( x, y, z, t) = u( x, y, z, t )exp ( iwt); therefore, 
one can consider that the equations for the potential of the acoustic velocity perturbation u(x, y, z, t) have 
the form 

u ~ x + u v v + u z z + ~ 2 u = O  in f l = D x R \ Z ~ .  (1.1) 

Here the dimensionless frequency A and the spatial variables x and y have the form A = wH/c, x = k/H,  and 
y = fl/H, where c is the speed of sound, H is the characteristic transverse size of the cylindrical channel, and 
w is the cyclic frequency of acoustic oscillations. In dimensionless variables, the cross-sectional area of the 
channel is assumed to be equal to unity, and the dimensionless quantity L characterizes the obstacle length 
with respect to the channel cross section. The following no-slip conditions should be satisfied on the obstacle 
Z~ and the channel walls Zr: 

u , ~ = 0  on Zrt.JZ. r. (1.2) 

Here n is the vector of the normal to the corresponding surface. According to the physical meaning of the 
problem, its solution u(x, y, z) requires the satisfaction of the condition of energy finiteness in the entire region 
of oscillations 

E(u) = [[lul 2 + IVu[ 2] df~ < ~ .  (1.3) 
f2 

Here f~ = D • R\Z7 is the region of oscillations; E(u) takes the meaning of the energy of oscillations. 
Radiation Conditions and Continuous Spectrum. In the general case, solution (1.1) describes the 

incoming and outgoing waves, which leads to nonunique solutions in the unbounded regions; therefore, 
additional conditions based on the physical meaning of the problem are required. 

Defini t ion 1.1. Solution (1.1) satisfies the radiation condition if, for some sufficiently small e [~ > 0, 
and -1 /~  < a(x, y) <~ x <~ b(x, y) < 1/~], the representations 

c~ +) exp(i~z) + E c~+)Yk(x,y)exp(--zv/~k- ~2) (z /> l /e) ,  
u(~, y) (1.4) 

exp(-i z) + E c -Ir'(x,Y)exp(zv - (z < 
k = l  

are valid. It is assumed that, for A 2 < fit, a branch of the quadratic root is chosen such that ~ - h e > 0, c (-) 

and c~ +) are the complex numbers such that the series (1.4) converges, and Yk(x, y) and fl~ (k = 0, 1, 2, . . . )  are 
the eigenfunctions and eigenvalues of the Laplace operator in the region D with the Neumann conditions on 
the boundary F enumerated in the ascending order of eigenvalues. It is worth mentioning that, if a function 
satisfies the radiation condition, it either increases or decreases in the general case just as the exponent with 
distance from the origin of coordinates (the obstacle). The radiation conditions are discussed in more details 
in [2]. 
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In the class of functions satisfying the radiation conditions (1.4), problem (1.1), (1.2) is a Fredholm 
function [2] having nontrivial solutions only for a set A* discrete at some Riemann surface A [the values of 
the parameter A of Eq. (1.1)]. In [2], they are called quasi-eigenvalues of the problem, and the solutions u* 
of the problem (1.1), (1.2), which correspond to A. (A. E A*), are called quasi-eigenfunctions. In the case of 
the finite energy of quasi-eigenoscillations [E(u*) < oo], the quasi-eigenfunction (u*) describes the classical 
eigenoscillations located in the vicinity of the obstacle and could cause resonance phenomena. In the case 
where the energy of quasi-eigenoscillations is infinite, the physical meaning of quasi-eigenoscillations is not 
yet completely clear. 

If A 2 >/ /3~, then Yk(x,y)exp(:l:izv/-~-/3~) (k = 0, 1 , . . . )  describes the generalized eigenwaves in a 
channel having no obstacle. If k = 0, these waves exist for all real values of the dimensionless frequency A. 
This means that the self-conjugated expansion of the Laplace operator - A ,  which corresponds to problem 
(1.1), (1.2), has a continuous spectrum filling the entire nonnegative section of the real straight line. The point 
spectrum of the operator is submerged into the continuous spectrum and corresponds to the values of A. 2, for 
which there exists a nontrivial solution of problem (1.1)-(1.3). For further consideration, we need 

Def in i t ion  1.2. The generalized eigenwaves in a channel which are described by the functions W0 = 
exp (iAz) are called piston modes. 

R e m a r k  1.1. Since the function that describes the piston mode does not depend on the variables 
(z, y), the piston mode is a generalized eigenfunction of the channel with and without a thin-walled cylindrical 
obstacle. 

Restriction of the Class of Solutions. The operator --AN, which corresponds to the problem of 
eigenoscillations near an obstacle in a channel, has a continuous spectrum coinciding with the positive semi- 
axis of real numbers, thereby complicating a study of the eigenfrequencies and eigenfunctions by variational 
methods. The restriction of the space of admissible solutions can shift the lower edge v of the continuous 
spectrum al of the operator -A(~ ) from the origin of coordinates. This makes it possible to use variational 
methods within the interval (0, v). 

Relations (1.1) and (1.2) are the Neumann problem for the Helmholtz equation, which is called below 
an EO (eigenoscillations) problem, and H~ is the space of admissible solutions of the problem (Sobolev's 
space). 

Def in i t ion  1.3. The solution u* of the EO problem which satisfies (1.3) is called an eigenfunction of 
this problem. The corresponding frequency A* is called an eigenfrequency. 

We note the following: the eigenfunctions of the EO problem are localized in the vicinity of the obstacle, 
the eigenfrequencies are submerged into the continuous spectrum, the piston mode W0 = exp(iAz) is a 
generalized eigenfunction of the EO problem, and the eigenfrequencies and eigenfunctions of the EO problem 
describe the acoustic resonance phenomena near the obstacle in the channel. Owing to the results of the theory 
of self-conjugated operators, the eigenfunctions have a zeroth projection in a certain space of functions onto 
the piston mode, since it is a generalized eigenfunction. Therefore, if the eigenfunction u* of the EO problem 
exists, it should satisfy the necessary condition 

[ exp (iAz)u*(x, y, z) d n =  0 

for all the values of A. This condition is satisfied for all A if and only if the equality 

/ u*(x, y, z) dx dy = 0 (1.5) 
D 

holds for all z. This condition bounds the space Hs of admissible solutions of the EO problem to the space 
that is the subspace Hs (/t0 C Hs). Hereafter, the EO problem with the additional condition (1.5) satisfied for 
all z is called an EOO (eigenoscillations orthogonal to the piston mode) problem. The continuous spectrum 
al corresponding to the EOO problem has the form al = [f12, ~ ) ;  therefore, the eigenvalues are searched for 
within the interval (0, ~2). 
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2. E x i s t e n c e  a n d  F o r m  of  E i g e n f u n c t i o n s .  The form of eigenfunctions far from the obstacle is 
described with the use of the radiation (the absence of outgoing waves) and energy-finiteness conditions. To 
gain an insight into the mechanics of eigenoscillations and the development of numerical algorithms, one has 
to know the form of the eigenfunction in the vicinity of the obstacle. 

Form of the Eigenfunction in the Vicinity of the Obstacle and Its Edges. The physical assumptions for 
a study of the form of eigenfunctions in the vicinity of the edge are as follows: (a) the energy in the vicinity 
of the edge is finite; (b) the edge does not radiate. 

R e m a r k  2.1. The assumptions (a) and (b) are equivalent and are the consequence of (1.3). 
Let L be such that ,  for all (x, y) E 72 the inequalities a(x, y) < -L/2 ,  and L/2 < b(x, y) hold. The 

quantity L can be considered as a characteristic dimensionless length of the obstacle Zr. Let (p, qa, z) be the 
cylindrical coordinates in the vicinity of a fixed point belonging to the obstacle edge, where p is the distance 
from the point of the obstacle edge, in the vicinity of which the form of solution is studied, to the current 
point in the plane (p, qa), and qa be the angle measured from the inner surface of the obstacle. One checks by 
direct expansion over the small parameter p that the solution u* of the EO (or EOO) problem has the form 

u* = const v~cos  (~/2) (2.1) 

in the vicinity of the obstacle edge. In terms of f~, the solution u of the EO (or EOO) problem can be given 
in the form 

u = Ud + uc (2.2) 

Here ud is a discontinuous function on the obstacle Z- r and uc is a continuous function in f~ U Z7 (inside 
the cylindrical channel). If a(x, y) = const and b(x, y) = const, the EOO problem becomes itself (invariant) 
with respect to the change of the variables z --~ - z  with an appropriate choice of the origin of coordinates 
(x = 0 is the middle of the obstacle). Therefore, any solution u of this problem can be represented in the 
form u = Us + ua, where us(x,y,z) = us (x , y , - z )  and ua(x,y,z) = -ua (x , y , - z )  are the symmetric (even) 
and antisymmetric (odd) components of u with respect to z. Since the EOO problem is linear, the space H0 
of all admissible solutions of the problem can be represented in the form of a direct sum of two spaces of the 
functions H0 = Ha �9 Ha which are symmetric Ha and antisymmetric H~ with respect to z. Owing to the 
linearity, the EOO problem is divided into two independent problems for even and odd functions with respect 
to z. Further consideration concerns solutions of the EOO problem that are symmetric (even) with respect 
to z, unless otherwise specified. 

Existence of Eigenoscillations. To substantiate the correctness of the mathematical description of 
acoustic eigenoscillations near a thin-walled cylindrical obstacle in a channel, we must show that the 
eigenoscillations exist at least for some geometric parameters in the cylindrical channel and are described 
by the mathematical model suggested. To this end, the "Dirichlet-Neumann bracket" method [3] is used 
Let, in addition to the conditions of the EOO problem, the Dirichlet (D) u(x, y, z) = 0 or the Neumann 
(N) condition cOu/Oz = 0 be satisfied at the additional boundaries -- = {(x, y, z): Izl = l /e ,  (x,y, z) E f~}. 
For convenience, the EOO problem with condition (D) is denoted by EOO(D~), and with condition (N) by 
EOO(N~). Let AD,, UD~ and AN~, UN, be the eigenvalues and eigenfunctions of the EOO(D~) and EOO(Ns) 
problems, respectively. Since the condition (N) expands the space of admissible solutions of the EOO problem 
and the condition (D) restricts the space, the inequalities that can be obtained by means of variational 
formulations of the problems [3] 

AN, 4 A* <~ AD, (2.3) 

are valid for all s (L/2 < 1/~). 
R e m a r k  2.2. If the inequalities 0 < AN, and 0 < AD~ < ~1 are satisfied for e (1/e > L/2), the existence 

of the eigenvalue of the EO problem follows from (2.3). If l ie = L/2, the condition (D) is a "soft" radiation 
condition for oscillations in the channel and the circular channel (regions I and II, respectively, in Fig. 2). In 
this case, ADe ---- ~r/L. Therefore, if 7r/L < ~1, we have A* < ~1. The latter inequality will be satisfied, if the 
dimensionless length of the obstacle L satisfies the inequality L > 7r/f~l. Since the orthogonality conditions 
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Fig. 2 

of the admissible solutions of the  E O 0  problem with respect to the piston mode  (1.5) are satisfied, 0 < )~Ne 
holds for ~ < 2/L. This means tha t ,  for the Neumann problem in the domain 12 N {(z, y, z): [z[ < l /e} ,  in the 
space of the admissible solutions of the E O 0  problem, the  first eigenvalue of the  Laplace operator is rigorously 
greater than  zero. As a result,  the  following theorem is valid [1]. 

T h e o r e m  2.1 (the sufficient condition for the  existence of eigenoscillations near an obstacle in a 
channel). If  the dimensionless length of the obstacle is L > 7rill ,  there exist nontrivial eigenfrequencies of the 
EO0 problem. 

This theorem answers the  question of the existence of eigenfrequencies of the problem for sufficiently 
large relative lengths of the  obstacle. A more general s ta tement  is also true. 

T h e o r e m  2.2 (existence of eigenoscillations). / f  a(x, y) <~ ao < bo <. b(x, y), eigenoscillations exist 
near an obstacle Z. r in a channel ZF. 

P r o o f .  The origin of coordinates can be chosen in such a way that  a(x, y) <~ - L / 2  < 0 < L/2 ~ b(x, y). 
It suffices to show that the inequalities 

0 < )~Ne ~< )~* ~ )~D~ < ~i (2.4) 

are satisfied for some r > 0. 

1. Estimate from Below. If 1/~ > L/2, then  0 < )~N~ by vir tue of (1.5) and the connectedness 
n {(x, y, z): Izl < 

2. Estimate from Above. Let the continuous component  ur of the approximate  eigenfunction u in (2.2) 
have the form uc = cos (cTrz/2)Y1 (x, y ) in  12. 

The component of the  approximate discontinuous eigenfunction (2.2) on the obstacle has the form 

a e ( S -  1)(z - n/2), (x,y) E 01, 

Ud = ae(z -- L/2), (x, y) G 92, 

where ae is an arbitrary constant  and S is the area D1; the area D is assumed to be equal to unity. The function 
Ud can be considered defined in the entire region of oscillations if it is taken to be zero beyond regions I and 
II. The inequality 

< f IV(,.,o + ud)l dry./_ f I,-,r + = (2.5) 2 

which reflects the variational property of eigenvalues [3], is valid for all ~. Here ~ = f~n {(x, y, z): ]z[ ~ 1/~}. 
By direct calculation (as a consequence of the finite carrier function ud), for small c, one checks that the 
asymptotic representation 

#2(ae, e) ~/32 + Ar + Be 2 (2.6) 

holds. The  quantities A and B depend on ae. Since r and ee are independent,  for small e, A is the determining 
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quantity in expansion (2.6). It is true that 

D 

D D 

Hence, we have A < 0 for small ze, positive or negative. Therefore, for sufficiently small ~ and ~, we have that 
#2(~, g) < f12. By virtue of relation (2.5), inequalities (2.4) hold. Theorem 2.1 is proved. 

R e m a r k  2.3. The method of proving Theorem 2.2 is based on the evaluation of the perturbation of the 
generalized eigenfunction introduced by the obstacle. The similarity of the eigenfunction to the generalized 

eigenfunction Y1 (x, y)exp (iz C - f12) increases with decrease in the obstacle length. 
R e m a r k  2.4. In principle, the mechanics of eigenoscillations near long (L > ~r/f~l) and short 

(L << ~r/~l) obstacles Z 7 is not different. For L << 7r/~l, the eigenfunctions cannot be localized between the 
obstacle and channel walls or inside the obstacle. If S ~ 0 (or S ~ 1), the eigenfunction is "forced" out of 
the space between the obstacle and the wall and from the obstacle "inside" (the smallness of he) as L --* 0. 
If L > ~r//31, as follows from the proof of Theorem 2.1, the eigenfunction is localized inside the obstacle and 
between the obstacle and the channel wall. 

Here we discuss the behavior of the smallest eigenvalues except for the cases specified. 
3. Radia l  Oscillations. Eigenosci l la t ions  nea r  a Th in -Wal l ed  R o u n d  Cyl indr ica l  Obstacle  in 

a Circular  Channe l .  A thin-walled round cylindrical obstacle in a circular channel is typical of engineering 
problems. Let (r, ~, z) be the cylindrical system of coordinates whose axis passes through the centers of the 
obstacle and channel directrices, which are the concentric circles in the plane z = const. The directrices Zr 
and Z 7 have the forms F = { ( r , ~ , z ) : r  = 1,z = const} and 7 = { ( r ,~ , z ) : r  = h , z  = const). The edges Z 7 
are assumed to be smooth and located in the planes z -- - L / 2  and z = L/2, and the origin of coordinates is 
in the middle of the channel. 

Representation of Eigenfunctions. Since the EO and EO0 problems have axial symmetry with the axis 
of rotation z, the solutions of these problems can be assumed to be independent of the angular coordinate 
and are only functions of (r, z). It is convenient to divide the oscillation region fl into the following subregions: 
I) {(r, cp, z):r < h , - L / 2  < z < L/2}; II) {(r, cp, z):h < r < 1 , - L / 2  < z < n/2}; III) {(r, cfl, z):r < 1,z < 
-L/2}; IV) {( r ,~ ,z) : r  < 1,L/2  < z} (Fig. 2). Let uj (j = 1 , . . . , 4 )  be the restriction of the solution u of 
the EO (or EOO) problem in I-IV, respectively. The general solution of the EO problem in I-IV for even and 
odd functions with respect to the variable z has the form 

{ cos()~z) } ~ (~_~.~){ c o s h ( z ~ / ~ 2 / h 2 - ) ~ 2 ) }  
ul(r ,z)  = ao + E amJo 

sin ($z) m=l s inh(z~ /~2 /h  2 $2) 

m=l sinh (z~/cr 2 - A 2) ' 

ua(r,z) =coexp( iAz)  + ~ ckJo(rt3k)exp(--zv/~k -- ~2), u4(r,z) = +ua(r,--z)  . 
k = l  --u3(r  , --z) 

The function u4(r,z) is expressed in terms of u3(r,z) with the use of the symmetry and antisymmetry 
conditions for even and odd oscillation modes with respect to z. Here and below,/32, and ~ (k = 1, 2 , . . . )  are 
the eigenvalues of the Laplace operator in the regions D and D2 (ring) with Neumann boundary conditions, 
~k (k = 0, 1, 2, . . . )  are the zeros of the function flJl(~),  and a~ (k = 1, 2 , . . . )  are the zeros of the 
function Jl (a)Yl (ah)  - J l (ah)Yl(a)  reckoned in ascending order. The functions Rm(r)  (m = 1, 2 , . . . )  are 
eigenfunctions of the Neumann problem for the Laplace operator in the region D2 (ring) and have the form 
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Rm(r) = c~)Jo(amr) + c(2m)Yo(amr); c~ ), and C(m 2) are found numerically from the Neumann conditions at the 
boundaries D2 for all ~r,,,. Conditions (1.5) are satisfied if 

co = O, aoh 2 + b0(1 - h 2) = 0. (3.2) 

For a function of the form (3.1) with conditions (3.2) to be the solution of the EOO problem, at the boundaries 
of regions I-III,  I-IV, II-III and II-IV there should be satisfied the continuity conditions of the solution and 
its normal derivative, which are usually called matching conditions [4]. By virtue of symmetry of the problem 
with respect to z, it is enough to satisfy the matching conditions at the boundaries of regions I-III and II-III. 
Let G13 be the boundary between I and III, and G23 be the boundary between II and III. These are the 
sections of straight lines in the space of variables (r, z). The matching conditions have the form 

0Ul OU3 0tt 2 OU 3 
ttl =U3, 0"-"Z-- 0---~ on ax3, u 2 = u 3 ,  0 ~ - -  0---~- on G23. (3.3) 

These conditions mean that the function of the form (3.1) is a weak solution of EO or EOO problems in 
Sobolev's space. For elliptic equations, the weak solution is a strong solution. 

Discretization of the Problem. One can approximate (for symmetric and antisymmetric functions with 
respect to z) the eigenfunctions fi(r, z) of the EOO problem in regions I and II (vicinities of the obstacle) in 
the form 

al(~,z)  = ao + ~ a~ao 
sin (,kz) m=l 

cos (~z)  
~2(r,z) = b0 sin(~z)  

cosh (z~/nUh~ - As) ] 
sinh (z~/n~lh~ - ~) ~ ' 

+ E bmRm(r) 
m=, sinh (z a~r~-~ -- F )  

(3.4) 

This representation of the eigenfunctions has (2M + 2) unknowns {am, bm}~=o,1 ..... M. The additional relation 
(3.2) decreases the number of variables by one. If (3.3) is regarded as the equalities of the Fourier series for 
functions of the form (3.4) in an appropriate orthogonal basis within the interval G13 U C23, they take the 
form of an infinite homogeneous system of equations [4]. Using the orthogonality in the region D of the Bessel 
functions Jo(~mr) and Jo(~kr) (for k # m) and eliminating ck, one can write relations (3.3) in discretized 
form 

h 1 
" o %  

i + 
o h 

where ak = V / ~ - A  2. The discretization of the problem should take into account approximately all the 
properties. Taking into account the energy-finiteness conditions is a specific problem characteristic of problems 
with sharp edges. For the numerical solution (3.5) to take into account the energy-finiteness conditions (1, 3), 
some additional conditions [4] are required. Here, for the sake of correct calculations, the discretized relations 
(3.3) are supplemented by the forced energy-fitness condition, which allows a substantial improvement in the 
accuracy and rate of calculations. By virtue of (2.1), at the edges z = -L/2  and z = E/2 of the obstacle Zv, 
for even and odd modes of oscillations, the equalities 

{ cos(+AL/2) } M {cosh(-4-L/2@32/h2_A2)} 
ao sin (-t-AL/2) + rn=lE am Jo(t3m) sinh(_t_L/2@32/h2_' s = O, 

are valid. 

cos (=t=AL/2) 

bo sin (:t=AL/2) 

} M { cosh ( = t = L / 2 v ~ _  A2) } 
+ E bmRm(h) = 0 

m=l sinh ( : t=L /2 ~  -~ ,~2) 

(3.6) 
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Fig. 3 Fig. 4 

Relations (3.6) mean the forced satisfaction of the energy-finiteness condition at the obstacle edges for 
approximate symmetric and antisymmetric eigenfunctions with respect to the z axis and are the supplementary 
relations for calculations of the eigenvalues and eigenfunctions. Relations (3.2), (3.6), and a certain part of 
(3.5) form a homogeneous system of (2M + 2) equations for the unknown {am, bin}m=0,1 ..... M- This system 
describes the approximate eigenfunctions of the EOO problem (3.4). The approximate eigenfunctions for the 
EOO problem are found from the equality of the determinant of this system to zero. 

Numerical Studies. The form of eigenfunctions in the vicinity of the obstacle was studied numerically 
by means of relations (3.2), (3.5), and (3.6). The studies were performed in the regions {(r,z):0 < r < 
h , - L / 2  < z < L/2}  inside and {(r ,z) :h < r < 1 , - L ] 2  < z < L/2} outside the obstacle in the space 
between the obstacle and the cylindrical channel. By virtue of (1.5), the oscillations inside the obstacle and in 
the space between the obstacle and the channel walls are in counterphase. This means that (e.g., for the first 
mode), if the compression phase occurs inside the obstacle, the rarefaction phase occurs between the obstacle 
and channel walls. 

Dependence of the Eigenfrequencies on the Obstacle Length. For a fixed obstacle radius h = 1/x/~, 
the dependence of the eigenfrequencies on the obstacle length was studied numerically. A comparison of the 
numerical results given in Fig. 3 shows that the resonance frequencies decrease as c2r with increase in the 
obstacle length L (CN is a certain number corresponding to the Nth  mode). We note that ~1 ---- 3.831 is 
the threshold frequency for all the oscillation modes (for example, the first eigenfrequency Wl tends to 3.831 
as L ~ 0). Except for the first mode, the intervals are determined for the critical length of the obstacle 

0 < L < L! k) (k = 2, 3 , . . . )  on which the kth mode does not exist. Here L! k) < oo is the maximum (critical) 
value of the obstacle length (it can be found numerically) for which the kth mode of eigenoscillations does 
not exist. 

The Form of Eigenfunctions. The Amplitude versus the Coordinates. The dependence of the 
eigenfunction on the coordinates for L = 3, and h = 1/x/~ were calculated by the method of the forced 
account of the energy finiteness. The dependence of the energy potential on the coordinates for the first 
(even) mode of eigenoscillations is shown in Fig. 4. Since the velocity potential for steady acoustic oscillations 
corresponds to an acoustic pressure field, one may consider that Fig. 4 shows the acoustic pressure field of 
eigenoscillations. Owing to the orthogonality of eigenoscillations to the piston mode, the eigenfunction is 
antisymmetric with respect to the obstacle if the obstacle is in the middle of the channel, i.e., the oscillations 
outside and inside the obstacle are in counterphase. 

Direction of the Acoustic Flow Velocities. Figure 5 shows the field of acoustic velocities near the obstacle 
(dashed area) for the first mode of eigenoscillations in the compression phase inside the obstacle and in the 
rarefaction phase between the obstacle and the cylindrical channel. 

Figure 6 shows the pressure field for acoustic eigenoscillations of the first mode in the rarefaction 
phase inside the obstacle and in the compression phase in the region between the obstacle and the cylindrical 
channel. We note that the most intense oscillations of the first mode are observed in the middle of the obstacle. 
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The studies allow one to better understand the mechanics of eigenoscillations near the obstacle in the 
channel. From Figs. 5, and 6, it follows that the eigenoscillations are the run-over of a gas from region I to 
region II and vice versa according to the phase of oscillation. 

Conclusions.  (1) A mathematical model which describes eigenoscillations near a thin-walled 
cylindrical obstacle in a channel has been constructed and substantiated. Numerical studies of eigenoscillations 
are performed. 

(2) It has been shown that eigenoscillations exist for any length of an arbitrary obstacle in an arbitrary 
channel. 

(3) The dependence of the frequency of eigenoscillations on the coordinates, the velocity field, the 
density distribution for the first two modes of eigenoscillations, and the mechanics of oscillations have been 
calculated numerically. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
00894). 
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